

HIT-CT 100 INJECTION MORTAR

Product Technical Datasheet Steel-to-concrete Update: Jun 24

HIT-CT 100 injection mortar

Anchor design (EN 1992-4) / Rods / Concrete

Injection mortar system

(also available as

500 ml foil pack)

Anchor rods

(M8-M24):

HAS HDG

HAS A4

HAS-U

HAS-U HDG

HAS-U HCR

HAS-U A4

HAS

🖈 safe

Benefits

Set technology: Makes installation steps faster, simpler and safer. Automatic borehole cleaning with hollow drill bits, accurate dosing with HDE and fast and safe torquing with the adaptive torque (AT) system.

- Optimized for environmental safety to meet high health and safety requirements (no hazard symbols)
- High performing mortar with a fast-curing time, suitable in base material temperatures between -5°C and 40°C
- Compliant with several environmental databases including BASTA, BVB, SUNDA HUS, SGBC and Nordic Swan
- Approved according to NSF / ANSI 61 "Drinking water system component-health effects".
- Suitable for uncracked and cracked concrete C20/25 to C50/60.
- Suitable for dry and water saturated concrete

Application condition

Base materia	ıl	Load condition
Concrete	Concrete	Static/
(uncracked)	(cracked)	quasi-static
Installation c	onditions	Other information
C		A

Linked Approvals/Certificates

Approval no	Application / loading condition	Authority / Laboratory	Date of issue
ETA-23/0705	Static and quasi-static	CSTB Champs-Sur-Marne	16-01-2024

Linked Instructions for use

Material							
Injection mortar	IFU Hilti HIT-CT 100	-	-				
Fastener	IFU HAS-U	IFU HAS	-				
Dispenser	IFU HDM	IFU HDE 500-22	IFU HDE 500-A12				

Links/QR codes to Hilti Webpage

Injection mortars / Dispenser / Fastener (Threaded rod)								
Hilti HIT-CT 100	HDE 500-22	HDE 500-A12	<u>HDM 500</u>	<u>HAS-U 8.8</u>	<u>HAS 8.8</u>			
	回 ※回 ※※※ ●							

Mechanical properties and dimensions HAS and HAS-U

Mechanical properties and dimensions of the threaded rods are standardized and can be taken from the ETA listed in the table Approvals / Certificates.

Static and quasi-static design according to EN 1992-4 based on ETA-23/0705

All data in this section applies to

- Correct setting (see setting instructions)
- For a single anchor
- No edge distance and spacing influence (see setting detail tables with characteristic distances)
- Minimum base material thickness, as specified in the table
- Embedment depth, as specified in the table of this section
- Anchor material, as specified in the tables of this section
- Concrete C20/25
- In-service temperate range I
- (min. base material temperature -40°C, max. long term/short term base material temperature: +24°C/40°C)
- The following data are valid for short term loads only. For long term loading apply ψ_{sus} acc. to EN 1992-4
- Hammer drilled holes and hammer drilled holes with hollow drill bit: $\psi^{0}_{sus} = 0,60$

For specific design cases involving permanent actions refer to **PROFIS Engineering**.

For hammer drilled holes, hammer drilled holes with Hilti hollow drill bit ^a):

Embedment depth and base material thickness

Anchor- size			M8	M10	M12	M16	M20	M24
Embedment depth ^{b)}	h _{ef}	[mm]	80	90	110	130	170	210
Base material thickness	\mathbf{h}_{min}	[mm]	110	120	140	160	220	270

a) Hilti hollow drill bit available for anchor rods and threaded rods with diameters M10-M24.

b) The allowed range of embedment depth is shown in the setting details

Design resistance

Anchor size			M8	M10	M12	M16	M20	M24	
Uncracked of	concrete								
Tension	HAS 5.8, HAS-U 5.8		[kN]	8,6	12,1	19,7	31,1	50,8	71,3
	HAS 8.8, HAS-U 8.8	N_{Rd}		8,6	12,1	19,7	31,1	50,8	71,3
	HAS A4, HAS-U A4	_		8,6	12,1	19,7	31,1	50,8	71,3
	HAS-U HCR			8,6	12,1	19,7	31,1	50,8	71,3
	HAS 5.8, HAS-U 5.8			7,3	11,6	16,9	31,4	49,0	70,6
Shear	HAS 8.8, HAS-U 8.8	V _{Rd}	[kN]	11,7	18,6	27,0	50,2	78,4	113,0
	HAS A4, HAS-U A4			8,2	13,0	18,9	35,2	55,0	79,2
	HAS-U HCR			11,7	18,6	27,0	50,2	78,4	70,6
Cracked cor	ncrete								
	HAS 5.8, HAS-U 5.8		[kN]	3,8	6,1	8,9	14,0	20,3	30,1
Tension	HAS 8.8, HAS-U 8.8	N _{Rd}		3,8	6,1	8,9	14,0	20,3	30,1
	HAS A4, HAS-U A4			3,8	6,1	8,9	14,0	20,3	30,1
	HAS-U HCR			3,8	6,1	8,9	14,0	20,3	30,1
	HAS 5.8, HAS-U 5.8		[kN]	7,3	11,6	16,9	31,4	49,0	70,6
Shear	HAS 8.8, HAS-U 8.8	 V _{Rd}		10,7	17,0	24,9	39,2	56,9	84,4
	HAS A4, HAS-U A4			8,2	13,0	18,9	35,2	55,0	79,2
	HAS-U HCR			10,7	17,0	24,9	39,2	56,9	70,6

Recommended loads ^{c)}

Anchor size				M8	M10	M12	M16	M20	M24
Uncracked of	concrete								
Tension	HAS 5.8, HAS-U 5.8		[kN]	6,2	8,7	14,1	22,2	36,3	50,9
	HAS 8.8, HAS-U 8.8	N _{rec}		6,2	8,7	14,1	22,2	36,3	50,9
	HAS A4, HAS-U A4			6,2	8,7	14,1	22,2	36,3	50,9
	HAS-U HCR			6,2	8,7	14,1	22,2	36,3	50,9
	HAS 5.8, HAS-U 5.8			5,2	8,3	12,0	22,4	35,0	50,4
Shear	HAS 8.8, HAS-U 8.8	V _{rec}	[kN]	8,4	13,3	19,3	35,9	56,0	80,7
	HAS A4, HAS-U A4			5,9	9,3	13,5	25,2	39,3	56,6
	HAS-U HCR			8,4	13,3	19,3	35,9	56,0	50,4
Cracked cor	ncrete								
	HAS 5.8, HAS-U 5.8		ec [kN]	2,7	4,3	6,3	10,0	14,5	21,5
Tension	HAS 8.8, HAS-U 8.8	N _{rec}		2,7	4,3	6,3	10,0	14,5	21,5
	HAS A4, HAS-U A4			2,7	4,3	6,3	10,0	14,5	21,5
	HAS-U HCR			2,7	4,3	6,3	10,0	14,5	21,5
	HAS 5.8, HAS-U 5.8			5,2	8,3	12,0	22,4	35,0	50,4
Shear	HAS 8.8, HAS-U 8.8	V _{rec}	[kN]	7,7	12,1	17,8	28,0	40,7	60,3
	HAS A4, HAS-U A4			5,9	9,3	13,5	25,2	39,3	56,6
	HAS-U HCR			7,7	12,1	17,8	28,0	40,7	50,4

c) With overall partial safety factor for action γ=1,4. The partial safety factors for action depend on the type of loading and shall be taken from national regulations.

Setting information

Base Material temperature during Installation:

-5°C to +40°C

In-service temperature range:

Hilti HIT-CT 100 injection mortar may be applied in the temperature ranges given below. An elevated base material temperature may lead to a reduction of the design bond resistance.

Temperature range	Base material temperature	Maximum long term base material temperature	Maximum short term base material temperature		
Temperature range I	-40 °C to +40 °C	+24 °C	+40 °C		
Temperature range II	-40 °C to +80 °C	+50 °C	+80 °C		

Maximum short term base material temperature

Short-term elevated base material temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling.

Maximum long term base material temperature

Long term elevated base material temperatures are roughly constant over significant periods of time.

Curing and working time ^{a)}

Temper base	ature mate	of the rial	Maximum working time	Minimum curing time			
	Т		twork	t _{cure} ^{a)}			
-5°C	to	0°C	30 min	6 h			
> 0°C	to	5°C	20 min	5 h			
> 5°C	to	10°C	15 min	4 h			
> 10°C	to	20°C	8 min	4 h			
> 20°C	to	30°C	4 min	3,5 h			
> 30°C	to	40°C	1,5 min	3 h			

a) The curing time data are valid for dry base material only. In wet material the curing times must be doubled.

Setting details for HAS and HAS-U

Anchor size			M8	M10	M12	M16	M20	M24
Nominal diameter of element	d	[mm]	8	10	12	16	20	24
Nominal diameter of drill bit	do	[mm]	10	12	14	18	22	28
Effective anchorage and drill hole	$h_{ef,min} = h_0$	[mm]	64	80	96	128	160	192
depth range ^{a)}	$h_{ef,max} = h_0$	[mm]	160	200	240	320	400	480
Minimum thickness of concrete member ^{a)}	h _{min}	[mm]	h _{ef} + 3() mm ≥ 1	00 mm		h _{ef} + 2 d ₀	
Minimum spacing	Smin	[mm]	40	50	60	80	100	120
Minimum edge distance	C _{min}	[mm]	40	45	45	50	55	60
Maximum diameter of clearance hole in the fixture	df	[mm]	9	12	14	18	22	26
Maximum torque moment ^{b)}	T _{max}	[Nm]	10	20	40	80	150	200
Characteristic distances								
Spacing for splitting failure	Scr,sp	[mm]			2	Ccr,sp		
			for	1,0 · h ef h / h _{ef} ≥	2,0	h/h _{ef} 2,0		
Edge distance for splitting failure ^{c)}	Ccr,sp	[mm]	4,6 h ef - 1,8 h for 2,0 > h / hef > 1,3		3 h ₁ > 1,3	1,3		
			for	2,26 h_{ef} h / h _{ef} ≤	1,3		1,0 h _{ef}	2,26 ⋅ h _{ef} c _c
Spacing for concrete cone failure	Scr,N	[mm]			2	Ccr,N		
Edge distance for concrete cone failure ^{c)}	Ccr,N	[mm]	1,5 h _{ef}					

For spacing (edge distance) smaller than characteristic spacing (characteristic edge distance) the design loads must be reduced.

. a) b) c)

 $h_{ef,min} \le h_{ef} \le h_{ef,max}$ (h_{ef} : embedment depth) Maximum recommended torque moment to avoid splitting failure during installation with min. spacing and/or edge distance h: base material thickness ($h \ge h_{min}$)

For detailed setting information on installation see instructions for use (IFU) given with the product. Approved installation methods can be found in the specific ETA/Certificate definitions.

Drilling and Installation equipment

Rotary Hammers (Corded and Cordless)		TE 2 - TE 80
Dispenser		HDE HDM
Other tools		Blow out pump, Compressed air gun, Set of cleaning brushes
		Hammer drill bit TE-CX, TE-YX, TE-C, TE-Y
		Hollow drill bit TE-CD, TE-YD
	1912	Piston plug